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Abstract

In this paper we describe an algorithm and a Fortran 90 module (Con-
ical) for the computation of the conical function Pm

−1
2+iτ

(x) for x > −1,

m ≥ 0, τ > 0. These functions appear in the solution of Dirichlet problems
for domains bounded by cones; because of this, they are involved in a large
number of applications in Engineering and Physics.

In the Fortran 90 module, the admissible parameter ranges for com-
puting the conical functions in standard IEEE double precision arithmetic
are restricted to (x,m, τ) ∈ (−1, 1) × [0, 40] × [0, 100] and (x,m, τ) ∈
(1, 100) × [0, 100] × [0, 100]. Based on tests of the three-term recurrence
relation satisfied by these functions and direct comparison with Maple, we
claim a relative accuracy close to 10−12 in the full parameter range, although
a mild loss of accuracy can be found at some points of the oscillatory region
of the conical functions. The relative accuracy increases to 10−13 − 10−14 in
the region of the monotonic regime of the functions where integral represen-
tations are computed (−1 < x < 0).
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Module Conical
Journal Reference:
Catalogue identifier:
Licensing provisions:
Programming language:
Fortran 90
Computer:
Any supporting a FORTRAN compiler.
Operating system:
Any supporting a FORTRAN compiler.
RAM:
a few MB
Number of processors used:
Keywords:
Conical functions; computational methods; asymptotic expansions; recurrence re-
lations.
Classification:
4.7 Other functions.
External routines/libraries:
The module Conical uses a Fortran 90 version of the routine dkia (developed by
the authors) for computing the modified Bessel functions Kia(x) and its derivative.
This routine is available at http://toms.calgo.org.
Subprograms used:
Nature of problem:
Conical functions appear in a large number of applications because these functions
are the natural function basis for solving Dirichlet problems bounded by conical
domains. Also, they are the Kernel of the Mehler-Fock transform.
Solution method:
The algorithm uses different methods of computation depending on the range of
parameters: asymptotic expansions, quadrature methods and recurrence relations.
Restrictions:
In order to avoid underflow/overflow problems, the admissible parameter ranges
for computing the conical functions in standard IEEE double precision arith-
metic are restricted to (x,m, τ) ∈ (−1, 1) × [0, 40] × [0, 100] and (x,m, τ) ∈
(1, 100) × [0, 100] × [0, 100].
Running time:
Depending on the parameter range: when numerical quadrature is used (for x < 0),
the algorithm is 10 − 20 times slower than the computations made using asymp-
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totic expansions + recurrence relations.

1. Introduction

Conical functions [1] (also called Mehler functions) appear in a large num-
ber of applications in engineering, applied physics [2], [3], particle physics
(related to the amplitude for Yukawa potential scattering) or cosmology [4],
among others. However, as far as the authors know, the only existing code
for computing conical functions is given by Kölbig [5], which is restricted for
m = 0, 1 (i.e. the functions P 0

−1
2+iτ

(x) and P 1
−1

2+iτ
(x)).

In this paper we describe an algorithm and a Fortran 90 module for the
computation of the conical function Pm

−1
2+iτ

(x) for x > −1,m ≥ 0, τ > 0. The

algorithm is based on the use of different methods of computation, depending
on the range of the parameters: quadrature methods, recurrence relations
and uniform asymptotic expansions in terms of elementary functions or in
terms of modified Bessel function Kia(x) and its derivative K ′

ia(x).
The suggested algorithm in [6] is improved by considering an additional

asymptotic expansion for large τ , which enables to enlarge the range of com-
putation in the τ variable. Also, the algorithm makes use of an expansion
in terms of elementary functions in the oscillatory regime, which was not
previously considered in [6].

Based on direct comparison with Maple and tests of three-term recurrence
relations satisfied by the functions, we claim a relative accuracy close to 10−12

(for IEEE standard double precision arithmetic) in the admissible range of
parameters for conical functions in the module Conical: (x,m, τ) ∈ (−1, 1)×
[0, 40] × [0, 100] and (x,m, τ) ∈ (1, 100) × [0, 100] × [0, 100].

2. Theoretical background

Conical functions Pm
− 1

2
+iτ

(x) are solutions of the associated Legendre equa-

tion

(1 − x2)
d2w

dx2 − 2x
dw

dx
+

(
ν(ν + 1) − m2

1 − x2

)
w = 0 (1)

for ν = −1
2

+ iτ and x > −1, τ > 0 and m = 0, 1, 2, . . .
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Figure 1: Graph of the function P 5
− 1

2+i
(x).
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The conical functions can be written in terms of the Gauss hypergeometric
function 2F1 as:

Pm
− 1

2
+iτ

(x) = cosh(πτ)
|Γ(m+ 1/2 + iτ)|2

πΓ(1 +m)

∣∣∣1 − x
1 + x

∣∣∣m/2 ×
2F1

(
1
2 − iτ, 1

2 + iτ

1 +m
; 1

2 − 1
2x

)
.

(2)

The absolute value
∣∣∣1 − x
1 + x

∣∣∣m/2 in the previous formula is the standard

normalization which gives real values for all x > −1.
The conical functions are monotonic in the interval (−1, xc) and oscillat-

ing in (xc,+∞), where xc =
√

1 + β2/β and β = τ/m. In the oscillatory
region, the functions strongly oscillate as τ is taken large. This is apparent
in Figures 1 and 2, where a plot of the functions P 5

− 1
2
+i

(x) and P 5
− 1

2
+i100

(x),

respectively, is shown. Figure 2 also shows that the frequency of oscillations
is higher for small x.

Next, we are going to describe the theoretical expressions involved in the
computation of conical functions:

2.1. Computation of Pm
−1

2+iτ
(x) for x > 0

Two kind of asymptotic expansions are considered: for large m and for
large τ .
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Figure 2: Graph of the function P 5
− 1

2+i100
(x).
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2.1.1. Asymptotic expansions for large m

For large values of the parameter m, asymptotic expansions for 0 < x < 1
and x > 1, respectively, are used:

1. The following asymptotic expansion is valid for 0 < x < 1, large posi-
tive values of m and uniformly valid for τ ≥ 0:

Pm
− 1

2
+iτ

(x) ∼
√

p

xm

Γ(1
2

+m) (1 − x2)m/2 cosh(πτ)e−mφ(t0)

π

∞∑
k=0

uk(β, p)

mk
.

(3)
The quantities β, p and φ(t0) are given by

β =
τ

m
, p =

x√
1 + β2(1 − x2)

, (4)

and

φ(t0) = ln
x(p+ 1)

p(β2 + 1)
+ β arccos

x(1 − pβ2)

p(1 + β2)
. (5)
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The first few coefficients of the expansion in 3 are

u0(β, p) = 1, u1(β, p) = −−β2 + 5β2p3 − 3β2p+ 3p

24(β2 + 1)
,

u2(β, p) =
1

1152(β2 + 1)2
[385β4p6 + 462β2(1 − β2)p4 − 10β4p3

+(81β4 − 522β2 + 81)p2 + 6β2(β2 − 1)p+ β4 + 72β2 − 72].
(6)

2. For x > 1, we use a representation in terms of the modified Bessel
function Kiτ (mζ), which is valid for m positive:

Pm
− 1

2
+iτ

(x) =
2Γ(1

2 +m) (x2 − 1)m/2 cosh(πτ)e−mλ

π
√

2π
Φ(ζ)×

[Am(β, ζ)Kiτ(mζ) − Bm(β, ζ)K ′
iτ(mζ)] ,

(7)

where

λ =
1

2

(
ln
x2 − 1

β2 + 1
+ β arccos

1 − β2

1 + β2

)
, (8)

β =
τ

m
, Φ(ζ) =

(
ζ2 − β2

1 + β2(1 − x2)

) 1
4

, (9)

and the functions Am(β, ζ) and Bm(β, ζ) have the expansions

Am(β, ζ) ∼
∞∑
n=0

An(β, ζ)

mn
, Bm(β, ζ) ∼

∞∑
n=0

Bn(β, ζ)

mn
. (10)

These expressions are valid for large m.
In this representation, the parameter ζ and the coefficients of the expan-
sions are given in two different x-regions: 1 < x ≤ xc (the monotonic

interval) and x > xc (the oscillatory region), where xc =

√
1 + β2

β
:

Case 1 < x ≤ xc:

In this case the quantity ζ ≥ β is given by the implicit equation

2
[√

ζ2 − β2 − β arccos(β/ζ)
]

= ln
p+ 1

p− 1
− β arccos

β2p2 − 1

β2p2 + 1
,

(11)
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where p is given by

p =
x√

1 + β2(1 − x2)
. (12)

This implicit equation cannot be inverted analitically. Then, a
method for computing numerical approximations to the solution
of this equation is needed. In the algorithm, we choose Newton’s
method given that initial approximations which guarantee conver-
gence of the method can be obtained [6].

The first few coefficients An(β, ζ), Bn(β, ζ) in (10) are

A0(β, ζ) = 1, B0(β, ζ) = 0, A1(β, ζ) =
β2

24(1 + β2)
, (13)

B1(β, ζ) = −(5β2(W 3p3 − 1 − β2) + 3W 2(Wp(1 − β2) − 1 − β2)ζ

24W 4(1 + β2)
,

(14)
where p is given in (12) and

W =
√
ζ2 − β2. (15)

Case x ≥ xc:

The quantity ζ ∈ [0, β] is given by the implicit equation

2
[√

β2 − ζ2 − βarccosh(β/ζ)
]

= 2 arccot q − β ln
βq + 1

βq − 1
, (16)

where q is given by

q =
x√

β2(x2 − 1) − 1
. (17)

As before, this equation is solved by using Newton’s method with
appropriated starting values [6].

The coefficients A0(β, ζ), B0(β, ζ), A1(β, ζ) are as in (13), whereas
the coefficient B1(β, ζ) is given by

B1(β, ζ) = −(5β2(V 3q3 − 1 − β2) + 3V 2(V q(1 − β2) − 1 − β2)ζ

24V 4(1 + β2)
,

(18)
where V =

√
β2 − ζ2.
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For the oscillatory case and far away from the transition point between
monotonic and oscillatory behaviour of the function (x >> xc > 1),
we also use an asymptotic expansion (valid for large m) in terms of
elementary functions:

Pm
− 1

2
+iτ

(x) ∼ 2

√
q

mx

(β2 + 1)
μ/2

Γ
(

1
2

+m
)

π
cosh(πτ)e−τ(π−arccot(β)) ×(

cosχ
∞∑
k=0

vk
mk

− sinχ
∞∑
k=0

wk
mk

)
.

(19)
where

χ = μ(βξ − arccot q) − 1
4
π, (20)

and the other parameters used in the expansion are given by

β =
τ

μ
, xc =

√
1 + β2

β
, ξ = arccosh

x

xc
, q =

cosh ξ

β sinh ξ
. (21)

The first coefficients of the expansion are

v0 = 1, w0 = 0,

v1 =
β2

24(1 + β2)
,

w1 = −q(5β2q2 + 3β2 − 3)
24(1 + β2)

,

v2 = −385β4q6 + 462β2(β2 − 1)q4 + (81β4 − 522β2 + 81)q2 − β4 − 72β2 + 72
1152(1 + β2)2

,

w2 =
β2q(5β2q2 + 3β2 − 3)

576(1 + β2)2
.

(22)
These coefficients also follow from the coefficents uk given in (4.4) of

[6] by writing p = iq. Then

vk = (−1)k�uk, wk = (−1)k	uk. (23)
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2.1.2. Asymptotic expansions for large τ

In order to obtain this expansion, we take the integral representation

Γ
(

1
2

+ μ
)√

π/2 sinhμ β P−μ
− 1

2
+iτ

(cosh β) =∫ β

0

(cosh β − cosh t)μ−
1
2 cos τt dt, �μ > −1

2
,

(24)

which is given in [7, p. 184].
The large τ asymptotics follows from applying the method of stationary

phase; see [8, §II.3].
We have the following result

Γ
(

1
2

+ μ
)√

π/2 sinhμ β P−μ
− 1

2
+iτ

(cosh β) ∼
∞∑
n=0

An
τn+1

+
∞∑
n=0

Bn

τn+μ+ 1
2

, (25)

where

An = − sin(nπ/2)
dn

dtn
(cosh β − cosh t)μ−

1
2

∣∣∣∣
t=0

, (26)

and

Bn = cosχn
Γ(n+ μ+ 1

2
)

n!

dn

dtn

(
cosh β − cosh t

β − t

)μ− 1
2

∣∣∣∣∣
t=β

, (27)

where
χn = 1

2

(
n− μ− 1

2

)
π + βτ. (28)

The coefficients An vanish for even n, because of the sine function. They
vanish also for odd n, because in that case the derivatives vanish at t = 0.

The expansion in (25), valid for arguments greater than 1 and large τ ,
can be written in the form

Pm
− 1

2
+iτ

(cosh β) ∼
√

2
π sinh β

cosh(πτ)
|Γ(m+ 1/2 + iτ)|2

π ×∑∞
n=0 cosχn

(
m+ 1

2

)
n

bn
τn+m+ 1

2

,
(29)
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where the first few coefficients bn are given by

b0 = 1,

b1 =
(2m− 1)x

4 sinhβ
,

b2 =
(2m− 1)(−8 + (6m− 1)x2)

96 sinh2 β
,

b3 =
(2m− 1)x((−1 + 4m2)x2 + 16 − 16m)

384 sinh3 β
,

(30)

and where
(
m+ 1

2

)
n

is the Pochhammer symbol of m+ 1
2 .

As this expansion holds for small m, we will use it for m = 0, 1; then,
if larger values of m are wanted, we will apply forward recursion with the
m-three term recurrence relation, as we will later discuss.

2.2. Computation of Pm
−1

2+iτ
(x) for −1 < x < 0

Conical functions in the interval x ∈ (−1, 0) are computed by means of
a stable integral representation as described in [6]. The starting point is the
following integral representation:

Pm
− 1

2
+iτ

(x) =
Γ(1

2 +m) (1 − x2)m/2 cosh(πτ)

π
√

2π

∫ ∞

−∞
e−mφ(t) dt√

x+ cosh t
, (31)

where
φ(t) = ln(x+ cosh t) − iβt, β =

τ

m
. (32)

In this form, this representation is not suitable for numerical computation
because of the factor eimβt in the integrand: this factor introduces oscillations
which could be very strong for large values of τ . Steepest descent methods [9,
Ch. 5] can be used for transforming this integral into a stable representation,
where oscillations are under control. In this way, it is possible to obtain the
following representation, valid for −1 < x < 0:

Pm
− 1

2
+iτ

(x) =
Γ(1

2
+m) (1 − x2)m/2

π
√

2π
2 cosh(πτ)e−μφ(t0)

√
p(1 + β2)

x(p+ 1)∫ ∞

0

e−(m+ 1
2
)ψr(s) cos((m+ 1

2
)ψi(s)) ds,

(33)
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where
β =

τ

m
, p =

x√
1 + β2(1 − x2)

, (34)

φ(t0) = ln
x(p+ 1)

p(β2 + 1)
+ β arccos

x(1 − pβ2)

p(1 + β2)
. (35)

and

ψr(s) = 1
2
ln

(
1 +

4(1 + β2)

1 + p
σ2 +

4(1 + β2)(1 + p2β2)

(1 + p)2
σ4

)
,

ψi(s) = arctan
β(1 + p) sinh s

1 + p + (1 − pβ2) sinh2(s/2)
− βs,

(36)

where σ = sinh(1
2s).

2.3. Three-term recurrence relations

Conical functions Pm
−1/2+iτ (x) satisfy three-term recurrence relations, which

are given by:

Pm+1
− 1

2
+iτ

(x) +
2mx√
1 − x2

Pm
− 1

2
+iτ

(x) −
(
(m− 1

2
)2 + τ 2

)
Pm−1
− 1

2
+iτ

(x) = 0 (37)

for x ∈ (−1, 1) and

Pm+1
− 1

2
+iτ

(x) − 2mx√
x2 − 1

Pm
− 1

2
+iτ

(x) +
(
(m− 1

2
)2 + τ 2

)
Pm−1
− 1

2
+iτ

(x) = 0 (38)

for x > 1.
These recurrence relations can be used, starting from two initial values,

for computing the functions when they are applied in the direction of stable
recursion: either backward or forward. Also, we will use these relations as a
test for the computations.

The stability analysis based on Perron’s theorem discussed in [6], revealed
that backward (forward) recursion was generally stable for x > 0 (x < 0).
However and similarly to other special functions, recurrence relations in the
oscillatory regime of the conical functions (x > xc > 1) are not bad condi-
tioned in both backward and forward directions; then, both recursions are
possible. We will use this property in combination to the asymptotic expan-
sion given in (29) for computing conical functions for large τ in the oscillatory
regime of the functions.
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3. Overview of the software structure

The Fortran 90 package includes the main module Conical, which in-
cludes the routine conic.

In the module Conical, the auxiliary module Someconstants is used.
This is a module for the computation of the main constants used in the
different routines. The routines included in auxil.f90 are also used in the
module Conical. Among them, there is a Fortran 90 version of a Fortran 77
routine for computing the modified Bessel functions Kia(x) and its derivative
K ′
ia(x), developed by the authors [10], [11].

4. Description of the individual software components

The Fortran 90 module Conical includes the public routine conic which
computes the conical functions Pm

− 1
2
+iτ

(x), x > −1, m ≥ 0, τ > 0. The

calling sequence of this routine is

CALL conic(x,mu,tau,pmtau,ierr)

where the input data are: x, mu and tau (arguments of the functions). The
outputs are the error flag ierr and the function value pmtau. The possible
values of the error flag are: ierr = 0, successful computation; ierr = 1,
computation failed due to overflow/underflow; ierr = 2, arguments out of
range.

5. Testing the algoritm

Two kind of tests have been considered for testing the accuracy of the
computed values of the conical functions: direct comparison against Maple
and a single step of the three-term recurrence relations (37) and (38). At most
of the points of the tested parameter space (x, τ,m) the comparison against
Maple shows that the accuracy was ∼ 10−12 or better (10−13−10−14 in −1 <
x < 0, included in the monotonic region). It is important to point out that for
x > 1, asymptotic expansions using the modified Bessel functions Kia(x) and
K ′
ia(x) (7) are considered and that the accuracy in the computation of these

functions is ∼ 5×10−13, as explained in [11]. So, the accuracy for computing
these functions limit the attainable accuracy in the computation of conical
functions. On the other hand, at some points of the oscillatory region of the
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Figure 3: Points in the (x, τ)-plane (x > 1) where the relative error in comparison with
the Maple value in the computation of P 95

− 1
2+iτ

(x) is ∼ 10−10. At the rest of tested points

in the (x, τ)-plane, the accuracy was found ∼ 10−12 or better. The curve y =
√

1 + β2/β,
where β = τ/95, and the regions where different approximations are used in the algorithm
for x > 1, are also shown in the figure.
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conical functions, the tested accuracy was ∼ 10−10. This is apparent in Figure
(3), where points in the (x, τ)-plane with a relative error (in comparison with
the Maple value) ∼ 10−10 in the computation of P 95

− 1
2
+iτ

(x), are plotted. The

figure also shows the curve y =
√

1 + β2/β, where β = τ/95. This curve
is the frontier between the monotonic and the oscillatory regions for the
conical function P 95

− 1
2
+iτ

(x). Additionally, the approximations used in the

algorithm for x > 1 are indicated in the figure. As can be seen, the density
of plotted points is larger in the region where asymptotic expansions in terms
of modified Bessel functions are used. Finally, it is important also to note
that in the oscillatory region the zeros of the conical functions are found and
at these points relative error losses its meaning.

6. Test run description

The Fortran 90 test program testcon.f90 includes the computation of 25
function values and their comparison with the corresponding pre-computed
results. Also, a single step of the three-term recurrence relations (37) and
(38) is tested for several values of the parameters (x, τ, m).
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